| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringelnzr.z |  |-  .0. = ( 0g ` R ) | 
						
							| 2 |  | ringelnzr.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | simpl |  |-  ( ( R e. Ring /\ X e. ( B \ { .0. } ) ) -> R e. Ring ) | 
						
							| 4 |  | eldifsni |  |-  ( X e. ( B \ { .0. } ) -> X =/= .0. ) | 
						
							| 5 | 4 | adantl |  |-  ( ( R e. Ring /\ X e. ( B \ { .0. } ) ) -> X =/= .0. ) | 
						
							| 6 |  | eldifi |  |-  ( X e. ( B \ { .0. } ) -> X e. B ) | 
						
							| 7 | 6 | adantl |  |-  ( ( R e. Ring /\ X e. ( B \ { .0. } ) ) -> X e. B ) | 
						
							| 8 | 2 1 | ring0cl |  |-  ( R e. Ring -> .0. e. B ) | 
						
							| 9 | 8 | adantr |  |-  ( ( R e. Ring /\ X e. ( B \ { .0. } ) ) -> .0. e. B ) | 
						
							| 10 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 11 | 2 10 1 | ring1eq0 |  |-  ( ( R e. Ring /\ X e. B /\ .0. e. B ) -> ( ( 1r ` R ) = .0. -> X = .0. ) ) | 
						
							| 12 | 3 7 9 11 | syl3anc |  |-  ( ( R e. Ring /\ X e. ( B \ { .0. } ) ) -> ( ( 1r ` R ) = .0. -> X = .0. ) ) | 
						
							| 13 | 12 | necon3d |  |-  ( ( R e. Ring /\ X e. ( B \ { .0. } ) ) -> ( X =/= .0. -> ( 1r ` R ) =/= .0. ) ) | 
						
							| 14 | 5 13 | mpd |  |-  ( ( R e. Ring /\ X e. ( B \ { .0. } ) ) -> ( 1r ` R ) =/= .0. ) | 
						
							| 15 | 10 1 | isnzr |  |-  ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= .0. ) ) | 
						
							| 16 | 3 14 15 | sylanbrc |  |-  ( ( R e. Ring /\ X e. ( B \ { .0. } ) ) -> R e. NzRing ) |