Description: A ring is a group. (Contributed by SN, 16-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ringgrpd.1 | |- ( ph -> R e. Ring ) |
|
Assertion | ringgrpd | |- ( ph -> R e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringgrpd.1 | |- ( ph -> R e. Ring ) |
|
2 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
3 | 1 2 | syl | |- ( ph -> R e. Grp ) |