Metamath Proof Explorer


Theorem ringgrpd

Description: A ring is a group. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis ringgrpd.1
|- ( ph -> R e. Ring )
Assertion ringgrpd
|- ( ph -> R e. Grp )

Proof

Step Hyp Ref Expression
1 ringgrpd.1
 |-  ( ph -> R e. Ring )
2 ringgrp
 |-  ( R e. Ring -> R e. Grp )
3 1 2 syl
 |-  ( ph -> R e. Grp )