Step |
Hyp |
Ref |
Expression |
1 |
|
ringid.b |
|- B = ( Base ` R ) |
2 |
|
ringid.t |
|- .x. = ( .r ` R ) |
3 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
4 |
1 3
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
5 |
4
|
adantr |
|- ( ( R e. Ring /\ X e. B ) -> ( 1r ` R ) e. B ) |
6 |
|
oveq1 |
|- ( u = ( 1r ` R ) -> ( u .x. X ) = ( ( 1r ` R ) .x. X ) ) |
7 |
6
|
eqeq1d |
|- ( u = ( 1r ` R ) -> ( ( u .x. X ) = X <-> ( ( 1r ` R ) .x. X ) = X ) ) |
8 |
|
oveq2 |
|- ( u = ( 1r ` R ) -> ( X .x. u ) = ( X .x. ( 1r ` R ) ) ) |
9 |
8
|
eqeq1d |
|- ( u = ( 1r ` R ) -> ( ( X .x. u ) = X <-> ( X .x. ( 1r ` R ) ) = X ) ) |
10 |
7 9
|
anbi12d |
|- ( u = ( 1r ` R ) -> ( ( ( u .x. X ) = X /\ ( X .x. u ) = X ) <-> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) ) |
11 |
10
|
adantl |
|- ( ( ( R e. Ring /\ X e. B ) /\ u = ( 1r ` R ) ) -> ( ( ( u .x. X ) = X /\ ( X .x. u ) = X ) <-> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) ) |
12 |
1 2 3
|
ringidmlem |
|- ( ( R e. Ring /\ X e. B ) -> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) |
13 |
5 11 12
|
rspcedvd |
|- ( ( R e. Ring /\ X e. B ) -> E. u e. B ( ( u .x. X ) = X /\ ( X .x. u ) = X ) ) |