| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringid.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | ringid.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 4 | 1 3 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 5 | 4 | adantr |  |-  ( ( R e. Ring /\ X e. B ) -> ( 1r ` R ) e. B ) | 
						
							| 6 |  | oveq1 |  |-  ( u = ( 1r ` R ) -> ( u .x. X ) = ( ( 1r ` R ) .x. X ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( u = ( 1r ` R ) -> ( ( u .x. X ) = X <-> ( ( 1r ` R ) .x. X ) = X ) ) | 
						
							| 8 |  | oveq2 |  |-  ( u = ( 1r ` R ) -> ( X .x. u ) = ( X .x. ( 1r ` R ) ) ) | 
						
							| 9 | 8 | eqeq1d |  |-  ( u = ( 1r ` R ) -> ( ( X .x. u ) = X <-> ( X .x. ( 1r ` R ) ) = X ) ) | 
						
							| 10 | 7 9 | anbi12d |  |-  ( u = ( 1r ` R ) -> ( ( ( u .x. X ) = X /\ ( X .x. u ) = X ) <-> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( R e. Ring /\ X e. B ) /\ u = ( 1r ` R ) ) -> ( ( ( u .x. X ) = X /\ ( X .x. u ) = X ) <-> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) ) | 
						
							| 12 | 1 2 3 | ringidmlem |  |-  ( ( R e. Ring /\ X e. B ) -> ( ( ( 1r ` R ) .x. X ) = X /\ ( X .x. ( 1r ` R ) ) = X ) ) | 
						
							| 13 | 5 11 12 | rspcedvd |  |-  ( ( R e. Ring /\ X e. B ) -> E. u e. B ( ( u .x. X ) = X /\ ( X .x. u ) = X ) ) |