Description: The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidcl.b | |- B = ( Base ` R ) |
|
| ringidcl.u | |- .1. = ( 1r ` R ) |
||
| Assertion | ringidcl | |- ( R e. Ring -> .1. e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidcl.b | |- B = ( Base ` R ) |
|
| 2 | ringidcl.u | |- .1. = ( 1r ` R ) |
|
| 3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 4 | 3 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 5 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 6 | 3 2 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 7 | 5 6 | mndidcl | |- ( ( mulGrp ` R ) e. Mnd -> .1. e. B ) |
| 8 | 4 7 | syl | |- ( R e. Ring -> .1. e. B ) |