Description: The unit element of a ring is unique. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringcl.b | |- B = ( Base ` R ) |
|
ringcl.t | |- .x. = ( .r ` R ) |
||
Assertion | ringideu | |- ( R e. Ring -> E! u e. B A. x e. B ( ( u .x. x ) = x /\ ( x .x. u ) = x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcl.b | |- B = ( Base ` R ) |
|
2 | ringcl.t | |- .x. = ( .r ` R ) |
|
3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
4 | 3 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
5 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
6 | 3 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
7 | 5 6 | mndideu | |- ( ( mulGrp ` R ) e. Mnd -> E! u e. B A. x e. B ( ( u .x. x ) = x /\ ( x .x. u ) = x ) ) |
8 | 4 7 | syl | |- ( R e. Ring -> E! u e. B A. x e. B ( ( u .x. x ) = x /\ ( x .x. u ) = x ) ) |