Step |
Hyp |
Ref |
Expression |
1 |
|
ringidss.g |
|- M = ( ( mulGrp ` R ) |`s A ) |
2 |
|
ringidss.b |
|- B = ( Base ` R ) |
3 |
|
ringidss.u |
|- .1. = ( 1r ` R ) |
4 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
5 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
6 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
7 |
|
simp3 |
|- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> .1. e. A ) |
8 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
9 |
8 2
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
10 |
1 9
|
ressbas2 |
|- ( A C_ B -> A = ( Base ` M ) ) |
11 |
10
|
3ad2ant2 |
|- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> A = ( Base ` M ) ) |
12 |
7 11
|
eleqtrd |
|- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> .1. e. ( Base ` M ) ) |
13 |
|
simp2 |
|- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> A C_ B ) |
14 |
11 13
|
eqsstrrd |
|- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> ( Base ` M ) C_ B ) |
15 |
14
|
sselda |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. ( Base ` M ) ) -> y e. B ) |
16 |
|
fvex |
|- ( Base ` M ) e. _V |
17 |
11 16
|
eqeltrdi |
|- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> A e. _V ) |
18 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
19 |
8 18
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
20 |
1 19
|
ressplusg |
|- ( A e. _V -> ( .r ` R ) = ( +g ` M ) ) |
21 |
17 20
|
syl |
|- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> ( .r ` R ) = ( +g ` M ) ) |
22 |
21
|
adantr |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( .r ` R ) = ( +g ` M ) ) |
23 |
22
|
oveqd |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( .1. ( .r ` R ) y ) = ( .1. ( +g ` M ) y ) ) |
24 |
2 18 3
|
ringlidm |
|- ( ( R e. Ring /\ y e. B ) -> ( .1. ( .r ` R ) y ) = y ) |
25 |
24
|
3ad2antl1 |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( .1. ( .r ` R ) y ) = y ) |
26 |
23 25
|
eqtr3d |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( .1. ( +g ` M ) y ) = y ) |
27 |
15 26
|
syldan |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. ( Base ` M ) ) -> ( .1. ( +g ` M ) y ) = y ) |
28 |
22
|
oveqd |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( y ( .r ` R ) .1. ) = ( y ( +g ` M ) .1. ) ) |
29 |
2 18 3
|
ringridm |
|- ( ( R e. Ring /\ y e. B ) -> ( y ( .r ` R ) .1. ) = y ) |
30 |
29
|
3ad2antl1 |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( y ( .r ` R ) .1. ) = y ) |
31 |
28 30
|
eqtr3d |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. B ) -> ( y ( +g ` M ) .1. ) = y ) |
32 |
15 31
|
syldan |
|- ( ( ( R e. Ring /\ A C_ B /\ .1. e. A ) /\ y e. ( Base ` M ) ) -> ( y ( +g ` M ) .1. ) = y ) |
33 |
4 5 6 12 27 32
|
ismgmid2 |
|- ( ( R e. Ring /\ A C_ B /\ .1. e. A ) -> .1. = ( 0g ` M ) ) |