Step |
Hyp |
Ref |
Expression |
1 |
|
ringidval.g |
|- G = ( mulGrp ` R ) |
2 |
|
ringidval.u |
|- .1. = ( 1r ` R ) |
3 |
|
df-ur |
|- 1r = ( 0g o. mulGrp ) |
4 |
3
|
fveq1i |
|- ( 1r ` R ) = ( ( 0g o. mulGrp ) ` R ) |
5 |
|
fnmgp |
|- mulGrp Fn _V |
6 |
|
fvco2 |
|- ( ( mulGrp Fn _V /\ R e. _V ) -> ( ( 0g o. mulGrp ) ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
7 |
5 6
|
mpan |
|- ( R e. _V -> ( ( 0g o. mulGrp ) ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
8 |
4 7
|
eqtrid |
|- ( R e. _V -> ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
9 |
|
0g0 |
|- (/) = ( 0g ` (/) ) |
10 |
|
fvprc |
|- ( -. R e. _V -> ( 1r ` R ) = (/) ) |
11 |
|
fvprc |
|- ( -. R e. _V -> ( mulGrp ` R ) = (/) ) |
12 |
11
|
fveq2d |
|- ( -. R e. _V -> ( 0g ` ( mulGrp ` R ) ) = ( 0g ` (/) ) ) |
13 |
9 10 12
|
3eqtr4a |
|- ( -. R e. _V -> ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) ) |
14 |
8 13
|
pm2.61i |
|- ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) |
15 |
1
|
fveq2i |
|- ( 0g ` G ) = ( 0g ` ( mulGrp ` R ) ) |
16 |
14 2 15
|
3eqtr4i |
|- .1. = ( 0g ` G ) |