Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitinvcl.1 | |- U = ( Unit ` R ) |
|
unitinvcl.2 | |- I = ( invr ` R ) |
||
ringinvcl.3 | |- B = ( Base ` R ) |
||
Assertion | ringinvcl | |- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | |- U = ( Unit ` R ) |
|
2 | unitinvcl.2 | |- I = ( invr ` R ) |
|
3 | ringinvcl.3 | |- B = ( Base ` R ) |
|
4 | 1 2 | unitinvcl | |- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. U ) |
5 | 3 1 | unitcl | |- ( ( I ` X ) e. U -> ( I ` X ) e. B ) |
6 | 4 5 | syl | |- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. B ) |