Metamath Proof Explorer


Theorem ringinvcl

Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1
|- U = ( Unit ` R )
unitinvcl.2
|- I = ( invr ` R )
ringinvcl.3
|- B = ( Base ` R )
Assertion ringinvcl
|- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. B )

Proof

Step Hyp Ref Expression
1 unitinvcl.1
 |-  U = ( Unit ` R )
2 unitinvcl.2
 |-  I = ( invr ` R )
3 ringinvcl.3
 |-  B = ( Base ` R )
4 1 2 unitinvcl
 |-  ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. U )
5 3 1 unitcl
 |-  ( ( I ` X ) e. U -> ( I ` X ) e. B )
6 4 5 syl
 |-  ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. B )