Description: If a ring unit element X admits both a left inverse Y and a right inverse Z , they are equal. (Contributed by Thierry Arnoux, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdrng4.b | |- B = ( Base ` R ) |
|
isdrng4.0 | |- .0. = ( 0g ` R ) |
||
isdrng4.1 | |- .1. = ( 1r ` R ) |
||
isdrng4.x | |- .x. = ( .r ` R ) |
||
isdrng4.u | |- U = ( Unit ` R ) |
||
isdrng4.r | |- ( ph -> R e. Ring ) |
||
ringinveu.1 | |- ( ph -> X e. B ) |
||
ringinveu.2 | |- ( ph -> Y e. B ) |
||
ringinveu.3 | |- ( ph -> Z e. B ) |
||
ringinveu.4 | |- ( ph -> ( Y .x. X ) = .1. ) |
||
ringinveu.5 | |- ( ph -> ( X .x. Z ) = .1. ) |
||
Assertion | ringinveu | |- ( ph -> Z = Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdrng4.b | |- B = ( Base ` R ) |
|
2 | isdrng4.0 | |- .0. = ( 0g ` R ) |
|
3 | isdrng4.1 | |- .1. = ( 1r ` R ) |
|
4 | isdrng4.x | |- .x. = ( .r ` R ) |
|
5 | isdrng4.u | |- U = ( Unit ` R ) |
|
6 | isdrng4.r | |- ( ph -> R e. Ring ) |
|
7 | ringinveu.1 | |- ( ph -> X e. B ) |
|
8 | ringinveu.2 | |- ( ph -> Y e. B ) |
|
9 | ringinveu.3 | |- ( ph -> Z e. B ) |
|
10 | ringinveu.4 | |- ( ph -> ( Y .x. X ) = .1. ) |
|
11 | ringinveu.5 | |- ( ph -> ( X .x. Z ) = .1. ) |
|
12 | 11 | oveq2d | |- ( ph -> ( Y .x. ( X .x. Z ) ) = ( Y .x. .1. ) ) |
13 | 10 | oveq1d | |- ( ph -> ( ( Y .x. X ) .x. Z ) = ( .1. .x. Z ) ) |
14 | 1 4 6 8 7 9 | ringassd | |- ( ph -> ( ( Y .x. X ) .x. Z ) = ( Y .x. ( X .x. Z ) ) ) |
15 | 1 4 3 6 9 | ringlidmd | |- ( ph -> ( .1. .x. Z ) = Z ) |
16 | 13 14 15 | 3eqtr3d | |- ( ph -> ( Y .x. ( X .x. Z ) ) = Z ) |
17 | 1 4 3 6 8 | ringridmd | |- ( ph -> ( Y .x. .1. ) = Y ) |
18 | 12 16 17 | 3eqtr3d | |- ( ph -> Z = Y ) |