Step |
Hyp |
Ref |
Expression |
1 |
|
ringinvnzdiv.b |
|- B = ( Base ` R ) |
2 |
|
ringinvnzdiv.t |
|- .x. = ( .r ` R ) |
3 |
|
ringinvnzdiv.u |
|- .1. = ( 1r ` R ) |
4 |
|
ringinvnzdiv.z |
|- .0. = ( 0g ` R ) |
5 |
|
ringinvnzdiv.r |
|- ( ph -> R e. Ring ) |
6 |
|
ringinvnzdiv.x |
|- ( ph -> X e. B ) |
7 |
|
ringinvnzdiv.a |
|- ( ph -> E. a e. B ( a .x. X ) = .1. ) |
8 |
|
oveq2 |
|- ( X = .0. -> ( a .x. X ) = ( a .x. .0. ) ) |
9 |
1 2 4
|
ringrz |
|- ( ( R e. Ring /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
10 |
5 9
|
sylan |
|- ( ( ph /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
11 |
|
eqeq12 |
|- ( ( ( a .x. X ) = .1. /\ ( a .x. .0. ) = .0. ) -> ( ( a .x. X ) = ( a .x. .0. ) <-> .1. = .0. ) ) |
12 |
11
|
biimpd |
|- ( ( ( a .x. X ) = .1. /\ ( a .x. .0. ) = .0. ) -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) |
13 |
12
|
ex |
|- ( ( a .x. X ) = .1. -> ( ( a .x. .0. ) = .0. -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) ) |
14 |
10 13
|
mpan9 |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( a .x. X ) = ( a .x. .0. ) -> .1. = .0. ) ) |
15 |
8 14
|
syl5 |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( X = .0. -> .1. = .0. ) ) |
16 |
|
oveq2 |
|- ( .1. = .0. -> ( X .x. .1. ) = ( X .x. .0. ) ) |
17 |
1 2 3
|
ringridm |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .1. ) = X ) |
18 |
1 2 4
|
ringrz |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
19 |
17 18
|
eqeq12d |
|- ( ( R e. Ring /\ X e. B ) -> ( ( X .x. .1. ) = ( X .x. .0. ) <-> X = .0. ) ) |
20 |
19
|
biimpd |
|- ( ( R e. Ring /\ X e. B ) -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) |
21 |
5 6 20
|
syl2anc |
|- ( ph -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) |
22 |
21
|
ad2antrr |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( X .x. .1. ) = ( X .x. .0. ) -> X = .0. ) ) |
23 |
16 22
|
syl5 |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. = .0. -> X = .0. ) ) |
24 |
15 23
|
impbid |
|- ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( X = .0. <-> .1. = .0. ) ) |
25 |
24 7
|
r19.29a |
|- ( ph -> ( X = .0. <-> .1. = .0. ) ) |
26 |
25
|
necon3bid |
|- ( ph -> ( X =/= .0. <-> .1. =/= .0. ) ) |