| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringinvnzdiv.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | ringinvnzdiv.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | ringinvnzdiv.u |  |-  .1. = ( 1r ` R ) | 
						
							| 4 |  | ringinvnzdiv.z |  |-  .0. = ( 0g ` R ) | 
						
							| 5 |  | ringinvnzdiv.r |  |-  ( ph -> R e. Ring ) | 
						
							| 6 |  | ringinvnzdiv.x |  |-  ( ph -> X e. B ) | 
						
							| 7 |  | ringinvnzdiv.a |  |-  ( ph -> E. a e. B ( a .x. X ) = .1. ) | 
						
							| 8 |  | ringinvnzdiv.y |  |-  ( ph -> Y e. B ) | 
						
							| 9 | 1 2 3 | ringlidm |  |-  ( ( R e. Ring /\ Y e. B ) -> ( .1. .x. Y ) = Y ) | 
						
							| 10 | 5 8 9 | syl2anc |  |-  ( ph -> ( .1. .x. Y ) = Y ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ph -> Y = ( .1. .x. Y ) ) | 
						
							| 12 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> Y = ( .1. .x. Y ) ) | 
						
							| 13 |  | oveq1 |  |-  ( .1. = ( a .x. X ) -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) | 
						
							| 14 | 13 | eqcoms |  |-  ( ( a .x. X ) = .1. -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. .x. Y ) = ( ( a .x. X ) .x. Y ) ) | 
						
							| 16 | 5 | adantr |  |-  ( ( ph /\ a e. B ) -> R e. Ring ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ a e. B ) -> a e. B ) | 
						
							| 18 | 6 | adantr |  |-  ( ( ph /\ a e. B ) -> X e. B ) | 
						
							| 19 | 8 | adantr |  |-  ( ( ph /\ a e. B ) -> Y e. B ) | 
						
							| 20 | 17 18 19 | 3jca |  |-  ( ( ph /\ a e. B ) -> ( a e. B /\ X e. B /\ Y e. B ) ) | 
						
							| 21 | 16 20 | jca |  |-  ( ( ph /\ a e. B ) -> ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) ) | 
						
							| 23 | 1 2 | ringass |  |-  ( ( R e. Ring /\ ( a e. B /\ X e. B /\ Y e. B ) ) -> ( ( a .x. X ) .x. Y ) = ( a .x. ( X .x. Y ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( ( a .x. X ) .x. Y ) = ( a .x. ( X .x. Y ) ) ) | 
						
							| 25 | 15 24 | eqtrd |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( .1. .x. Y ) = ( a .x. ( X .x. Y ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> ( .1. .x. Y ) = ( a .x. ( X .x. Y ) ) ) | 
						
							| 27 |  | oveq2 |  |-  ( ( X .x. Y ) = .0. -> ( a .x. ( X .x. Y ) ) = ( a .x. .0. ) ) | 
						
							| 28 | 1 2 4 | ringrz |  |-  ( ( R e. Ring /\ a e. B ) -> ( a .x. .0. ) = .0. ) | 
						
							| 29 | 5 28 | sylan |  |-  ( ( ph /\ a e. B ) -> ( a .x. .0. ) = .0. ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) -> ( a .x. .0. ) = .0. ) | 
						
							| 31 | 27 30 | sylan9eqr |  |-  ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> ( a .x. ( X .x. Y ) ) = .0. ) | 
						
							| 32 | 12 26 31 | 3eqtrd |  |-  ( ( ( ( ph /\ a e. B ) /\ ( a .x. X ) = .1. ) /\ ( X .x. Y ) = .0. ) -> Y = .0. ) | 
						
							| 33 | 32 | exp31 |  |-  ( ( ph /\ a e. B ) -> ( ( a .x. X ) = .1. -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) | 
						
							| 34 | 33 | rexlimdva |  |-  ( ph -> ( E. a e. B ( a .x. X ) = .1. -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) | 
						
							| 35 | 7 34 | mpd |  |-  ( ph -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) | 
						
							| 36 |  | oveq2 |  |-  ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) | 
						
							| 37 | 1 2 4 | ringrz |  |-  ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) | 
						
							| 38 | 5 6 37 | syl2anc |  |-  ( ph -> ( X .x. .0. ) = .0. ) | 
						
							| 39 | 36 38 | sylan9eqr |  |-  ( ( ph /\ Y = .0. ) -> ( X .x. Y ) = .0. ) | 
						
							| 40 | 39 | ex |  |-  ( ph -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) | 
						
							| 41 | 35 40 | impbid |  |-  ( ph -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) |