Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidm.b | |- B = ( Base ` R ) |
|
| ringidm.t | |- .x. = ( .r ` R ) |
||
| ringidm.u | |- .1. = ( 1r ` R ) |
||
| Assertion | ringlidm | |- ( ( R e. Ring /\ X e. B ) -> ( .1. .x. X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidm.b | |- B = ( Base ` R ) |
|
| 2 | ringidm.t | |- .x. = ( .r ` R ) |
|
| 3 | ringidm.u | |- .1. = ( 1r ` R ) |
|
| 4 | 1 2 3 | ringidmlem | |- ( ( R e. Ring /\ X e. B ) -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) |
| 5 | 4 | simpld | |- ( ( R e. Ring /\ X e. B ) -> ( .1. .x. X ) = X ) |