Metamath Proof Explorer


Theorem ringlzd

Description: The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025)

Ref Expression
Hypotheses ringz.b
|- B = ( Base ` R )
ringz.t
|- .x. = ( .r ` R )
ringz.z
|- .0. = ( 0g ` R )
ringlzd.r
|- ( ph -> R e. Ring )
ringlzd.x
|- ( ph -> X e. B )
Assertion ringlzd
|- ( ph -> ( .0. .x. X ) = .0. )

Proof

Step Hyp Ref Expression
1 ringz.b
 |-  B = ( Base ` R )
2 ringz.t
 |-  .x. = ( .r ` R )
3 ringz.z
 |-  .0. = ( 0g ` R )
4 ringlzd.r
 |-  ( ph -> R e. Ring )
5 ringlzd.x
 |-  ( ph -> X e. B )
6 1 2 3 ringlz
 |-  ( ( R e. Ring /\ X e. B ) -> ( .0. .x. X ) = .0. )
7 4 5 6 syl2anc
 |-  ( ph -> ( .0. .x. X ) = .0. )