Description: The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringz.b | |- B = ( Base ` R ) |
|
| ringz.t | |- .x. = ( .r ` R ) |
||
| ringz.z | |- .0. = ( 0g ` R ) |
||
| ringlzd.r | |- ( ph -> R e. Ring ) |
||
| ringlzd.x | |- ( ph -> X e. B ) |
||
| Assertion | ringlzd | |- ( ph -> ( .0. .x. X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringz.b | |- B = ( Base ` R ) |
|
| 2 | ringz.t | |- .x. = ( .r ` R ) |
|
| 3 | ringz.z | |- .0. = ( 0g ` R ) |
|
| 4 | ringlzd.r | |- ( ph -> R e. Ring ) |
|
| 5 | ringlzd.x | |- ( ph -> X e. B ) |
|
| 6 | 1 2 3 | ringlz | |- ( ( R e. Ring /\ X e. B ) -> ( .0. .x. X ) = .0. ) |
| 7 | 4 5 6 | syl2anc | |- ( ph -> ( .0. .x. X ) = .0. ) |