Description: The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringz.b | |- B = ( Base ` R ) |
|
ringz.t | |- .x. = ( .r ` R ) |
||
ringz.z | |- .0. = ( 0g ` R ) |
||
ringlzd.r | |- ( ph -> R e. Ring ) |
||
ringlzd.x | |- ( ph -> X e. B ) |
||
Assertion | ringlzd | |- ( ph -> ( .0. .x. X ) = .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringz.b | |- B = ( Base ` R ) |
|
2 | ringz.t | |- .x. = ( .r ` R ) |
|
3 | ringz.z | |- .0. = ( 0g ` R ) |
|
4 | ringlzd.r | |- ( ph -> R e. Ring ) |
|
5 | ringlzd.x | |- ( ph -> X e. B ) |
|
6 | 1 2 3 | ringlz | |- ( ( R e. Ring /\ X e. B ) -> ( .0. .x. X ) = .0. ) |
7 | 4 5 6 | syl2anc | |- ( ph -> ( .0. .x. X ) = .0. ) |