Metamath Proof Explorer


Theorem ringmnd

Description: A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion ringmnd
|- ( R e. Ring -> R e. Mnd )

Proof

Step Hyp Ref Expression
1 ringgrp
 |-  ( R e. Ring -> R e. Grp )
2 1 grpmndd
 |-  ( R e. Ring -> R e. Mnd )