| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringneglmul.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | ringneglmul.t |  |-  .x. = ( .r ` R ) | 
						
							| 3 |  | ringneglmul.n |  |-  N = ( invg ` R ) | 
						
							| 4 |  | ringneglmul.r |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | ringneglmul.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | ringneglmul.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 8 | 4 7 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 9 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 10 | 1 9 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> ( 1r ` R ) e. B ) | 
						
							| 12 | 1 3 | grpinvcl |  |-  ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) | 
						
							| 13 | 8 11 12 | syl2anc |  |-  ( ph -> ( N ` ( 1r ` R ) ) e. B ) | 
						
							| 14 | 1 2 | ringass |  |-  ( ( R e. Ring /\ ( ( N ` ( 1r ` R ) ) e. B /\ X e. B /\ Y e. B ) ) -> ( ( ( N ` ( 1r ` R ) ) .x. X ) .x. Y ) = ( ( N ` ( 1r ` R ) ) .x. ( X .x. Y ) ) ) | 
						
							| 15 | 4 13 5 6 14 | syl13anc |  |-  ( ph -> ( ( ( N ` ( 1r ` R ) ) .x. X ) .x. Y ) = ( ( N ` ( 1r ` R ) ) .x. ( X .x. Y ) ) ) | 
						
							| 16 | 1 2 9 3 4 5 | ringnegl |  |-  ( ph -> ( ( N ` ( 1r ` R ) ) .x. X ) = ( N ` X ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ph -> ( ( ( N ` ( 1r ` R ) ) .x. X ) .x. Y ) = ( ( N ` X ) .x. Y ) ) | 
						
							| 18 | 1 2 | ringcl |  |-  ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) | 
						
							| 19 | 4 5 6 18 | syl3anc |  |-  ( ph -> ( X .x. Y ) e. B ) | 
						
							| 20 | 1 2 9 3 4 19 | ringnegl |  |-  ( ph -> ( ( N ` ( 1r ` R ) ) .x. ( X .x. Y ) ) = ( N ` ( X .x. Y ) ) ) | 
						
							| 21 | 15 17 20 | 3eqtr3d |  |-  ( ph -> ( ( N ` X ) .x. Y ) = ( N ` ( X .x. Y ) ) ) |