| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringnegl.b |
|- B = ( Base ` R ) |
| 2 |
|
ringnegl.t |
|- .x. = ( .r ` R ) |
| 3 |
|
ringnegl.u |
|- .1. = ( 1r ` R ) |
| 4 |
|
ringnegl.n |
|- N = ( invg ` R ) |
| 5 |
|
ringnegl.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
ringnegl.x |
|- ( ph -> X e. B ) |
| 7 |
1 3
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
| 8 |
5 7
|
syl |
|- ( ph -> .1. e. B ) |
| 9 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 10 |
5 9
|
syl |
|- ( ph -> R e. Grp ) |
| 11 |
1 4
|
grpinvcl |
|- ( ( R e. Grp /\ .1. e. B ) -> ( N ` .1. ) e. B ) |
| 12 |
10 8 11
|
syl2anc |
|- ( ph -> ( N ` .1. ) e. B ) |
| 13 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 14 |
1 13 2
|
ringdir |
|- ( ( R e. Ring /\ ( .1. e. B /\ ( N ` .1. ) e. B /\ X e. B ) ) -> ( ( .1. ( +g ` R ) ( N ` .1. ) ) .x. X ) = ( ( .1. .x. X ) ( +g ` R ) ( ( N ` .1. ) .x. X ) ) ) |
| 15 |
5 8 12 6 14
|
syl13anc |
|- ( ph -> ( ( .1. ( +g ` R ) ( N ` .1. ) ) .x. X ) = ( ( .1. .x. X ) ( +g ` R ) ( ( N ` .1. ) .x. X ) ) ) |
| 16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 17 |
1 13 16 4
|
grprinv |
|- ( ( R e. Grp /\ .1. e. B ) -> ( .1. ( +g ` R ) ( N ` .1. ) ) = ( 0g ` R ) ) |
| 18 |
10 8 17
|
syl2anc |
|- ( ph -> ( .1. ( +g ` R ) ( N ` .1. ) ) = ( 0g ` R ) ) |
| 19 |
18
|
oveq1d |
|- ( ph -> ( ( .1. ( +g ` R ) ( N ` .1. ) ) .x. X ) = ( ( 0g ` R ) .x. X ) ) |
| 20 |
1 2 16
|
ringlz |
|- ( ( R e. Ring /\ X e. B ) -> ( ( 0g ` R ) .x. X ) = ( 0g ` R ) ) |
| 21 |
5 6 20
|
syl2anc |
|- ( ph -> ( ( 0g ` R ) .x. X ) = ( 0g ` R ) ) |
| 22 |
19 21
|
eqtrd |
|- ( ph -> ( ( .1. ( +g ` R ) ( N ` .1. ) ) .x. X ) = ( 0g ` R ) ) |
| 23 |
1 2 3
|
ringlidm |
|- ( ( R e. Ring /\ X e. B ) -> ( .1. .x. X ) = X ) |
| 24 |
5 6 23
|
syl2anc |
|- ( ph -> ( .1. .x. X ) = X ) |
| 25 |
24
|
oveq1d |
|- ( ph -> ( ( .1. .x. X ) ( +g ` R ) ( ( N ` .1. ) .x. X ) ) = ( X ( +g ` R ) ( ( N ` .1. ) .x. X ) ) ) |
| 26 |
15 22 25
|
3eqtr3rd |
|- ( ph -> ( X ( +g ` R ) ( ( N ` .1. ) .x. X ) ) = ( 0g ` R ) ) |
| 27 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ ( N ` .1. ) e. B /\ X e. B ) -> ( ( N ` .1. ) .x. X ) e. B ) |
| 28 |
5 12 6 27
|
syl3anc |
|- ( ph -> ( ( N ` .1. ) .x. X ) e. B ) |
| 29 |
1 13 16 4
|
grpinvid1 |
|- ( ( R e. Grp /\ X e. B /\ ( ( N ` .1. ) .x. X ) e. B ) -> ( ( N ` X ) = ( ( N ` .1. ) .x. X ) <-> ( X ( +g ` R ) ( ( N ` .1. ) .x. X ) ) = ( 0g ` R ) ) ) |
| 30 |
10 6 28 29
|
syl3anc |
|- ( ph -> ( ( N ` X ) = ( ( N ` .1. ) .x. X ) <-> ( X ( +g ` R ) ( ( N ` .1. ) .x. X ) ) = ( 0g ` R ) ) ) |
| 31 |
26 30
|
mpbird |
|- ( ph -> ( N ` X ) = ( ( N ` .1. ) .x. X ) ) |
| 32 |
31
|
eqcomd |
|- ( ph -> ( ( N ` .1. ) .x. X ) = ( N ` X ) ) |