| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringnegl.b |
|- B = ( Base ` R ) |
| 2 |
|
ringnegl.t |
|- .x. = ( .r ` R ) |
| 3 |
|
ringnegl.u |
|- .1. = ( 1r ` R ) |
| 4 |
|
ringnegl.n |
|- N = ( invg ` R ) |
| 5 |
|
ringnegl.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
ringnegl.x |
|- ( ph -> X e. B ) |
| 7 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 8 |
5 7
|
syl |
|- ( ph -> R e. Grp ) |
| 9 |
1 3
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
| 10 |
5 9
|
syl |
|- ( ph -> .1. e. B ) |
| 11 |
1 4
|
grpinvcl |
|- ( ( R e. Grp /\ .1. e. B ) -> ( N ` .1. ) e. B ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ph -> ( N ` .1. ) e. B ) |
| 13 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 14 |
1 13 2
|
ringdi |
|- ( ( R e. Ring /\ ( X e. B /\ ( N ` .1. ) e. B /\ .1. e. B ) ) -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) ) |
| 15 |
5 6 12 10 14
|
syl13anc |
|- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) ) |
| 16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 17 |
1 13 16 4
|
grplinv |
|- ( ( R e. Grp /\ .1. e. B ) -> ( ( N ` .1. ) ( +g ` R ) .1. ) = ( 0g ` R ) ) |
| 18 |
8 10 17
|
syl2anc |
|- ( ph -> ( ( N ` .1. ) ( +g ` R ) .1. ) = ( 0g ` R ) ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( X .x. ( 0g ` R ) ) ) |
| 20 |
1 2 16
|
ringrz |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 21 |
5 6 20
|
syl2anc |
|- ( ph -> ( X .x. ( 0g ` R ) ) = ( 0g ` R ) ) |
| 22 |
19 21
|
eqtrd |
|- ( ph -> ( X .x. ( ( N ` .1. ) ( +g ` R ) .1. ) ) = ( 0g ` R ) ) |
| 23 |
1 2 3
|
ringridm |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .1. ) = X ) |
| 24 |
5 6 23
|
syl2anc |
|- ( ph -> ( X .x. .1. ) = X ) |
| 25 |
24
|
oveq2d |
|- ( ph -> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) ( X .x. .1. ) ) = ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) ) |
| 26 |
15 22 25
|
3eqtr3rd |
|- ( ph -> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) |
| 27 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ ( N ` .1. ) e. B ) -> ( X .x. ( N ` .1. ) ) e. B ) |
| 28 |
5 6 12 27
|
syl3anc |
|- ( ph -> ( X .x. ( N ` .1. ) ) e. B ) |
| 29 |
1 13 16 4
|
grpinvid2 |
|- ( ( R e. Grp /\ X e. B /\ ( X .x. ( N ` .1. ) ) e. B ) -> ( ( N ` X ) = ( X .x. ( N ` .1. ) ) <-> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) ) |
| 30 |
8 6 28 29
|
syl3anc |
|- ( ph -> ( ( N ` X ) = ( X .x. ( N ` .1. ) ) <-> ( ( X .x. ( N ` .1. ) ) ( +g ` R ) X ) = ( 0g ` R ) ) ) |
| 31 |
26 30
|
mpbird |
|- ( ph -> ( N ` X ) = ( X .x. ( N ` .1. ) ) ) |
| 32 |
31
|
eqcomd |
|- ( ph -> ( X .x. ( N ` .1. ) ) = ( N ` X ) ) |