| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringprop.b |  |-  ( Base ` K ) = ( Base ` L ) | 
						
							| 2 |  | ringprop.p |  |-  ( +g ` K ) = ( +g ` L ) | 
						
							| 3 |  | ringprop.m |  |-  ( .r ` K ) = ( .r ` L ) | 
						
							| 4 |  | eqidd |  |-  ( T. -> ( Base ` K ) = ( Base ` K ) ) | 
						
							| 5 | 1 | a1i |  |-  ( T. -> ( Base ` K ) = ( Base ` L ) ) | 
						
							| 6 | 2 | oveqi |  |-  ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) | 
						
							| 7 | 6 | a1i |  |-  ( ( T. /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) | 
						
							| 8 | 3 | oveqi |  |-  ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) | 
						
							| 9 | 8 | a1i |  |-  ( ( T. /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) | 
						
							| 10 | 4 5 7 9 | ringpropd |  |-  ( T. -> ( K e. Ring <-> L e. Ring ) ) | 
						
							| 11 | 10 | mptru |  |-  ( K e. Ring <-> L e. Ring ) |