Description: The unity element of a ring is a right multiplicative identity. (Contributed by SN, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlidmd.b | |- B = ( Base ` R ) |
|
| ringlidmd.t | |- .x. = ( .r ` R ) |
||
| ringlidmd.u | |- .1. = ( 1r ` R ) |
||
| ringlidmd.r | |- ( ph -> R e. Ring ) |
||
| ringlidmd.x | |- ( ph -> X e. B ) |
||
| Assertion | ringridmd | |- ( ph -> ( X .x. .1. ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlidmd.b | |- B = ( Base ` R ) |
|
| 2 | ringlidmd.t | |- .x. = ( .r ` R ) |
|
| 3 | ringlidmd.u | |- .1. = ( 1r ` R ) |
|
| 4 | ringlidmd.r | |- ( ph -> R e. Ring ) |
|
| 5 | ringlidmd.x | |- ( ph -> X e. B ) |
|
| 6 | 1 2 3 | ringridm | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .1. ) = X ) |
| 7 | 4 5 6 | syl2anc | |- ( ph -> ( X .x. .1. ) = X ) |