Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringz.b | |- B = ( Base ` R ) |
|
| ringz.t | |- .x. = ( .r ` R ) |
||
| ringz.z | |- .0. = ( 0g ` R ) |
||
| Assertion | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringz.b | |- B = ( Base ` R ) |
|
| 2 | ringz.t | |- .x. = ( .r ` R ) |
|
| 3 | ringz.z | |- .0. = ( 0g ` R ) |
|
| 4 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 5 | 1 2 3 | rngrz | |- ( ( R e. Rng /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| 6 | 4 5 | sylan | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |