Description: The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringz.b | |- B = ( Base ` R ) | |
| ringz.t | |- .x. = ( .r ` R ) | ||
| ringz.z | |- .0. = ( 0g ` R ) | ||
| ringlzd.r | |- ( ph -> R e. Ring ) | ||
| ringlzd.x | |- ( ph -> X e. B ) | ||
| Assertion | ringrzd | |- ( ph -> ( X .x. .0. ) = .0. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringz.b | |- B = ( Base ` R ) | |
| 2 | ringz.t | |- .x. = ( .r ` R ) | |
| 3 | ringz.z | |- .0. = ( 0g ` R ) | |
| 4 | ringlzd.r | |- ( ph -> R e. Ring ) | |
| 5 | ringlzd.x | |- ( ph -> X e. B ) | |
| 6 | 1 2 3 | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) | 
| 7 | 4 5 6 | syl2anc | |- ( ph -> ( X .x. .0. ) = .0. ) |