Metamath Proof Explorer


Theorem ringsubdir

Description: Ring multiplication distributes over subtraction. ( subdir analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses ringsubdi.b
|- B = ( Base ` R )
ringsubdi.t
|- .x. = ( .r ` R )
ringsubdi.m
|- .- = ( -g ` R )
ringsubdi.r
|- ( ph -> R e. Ring )
ringsubdi.x
|- ( ph -> X e. B )
ringsubdi.y
|- ( ph -> Y e. B )
ringsubdi.z
|- ( ph -> Z e. B )
Assertion ringsubdir
|- ( ph -> ( ( X .- Y ) .x. Z ) = ( ( X .x. Z ) .- ( Y .x. Z ) ) )

Proof

Step Hyp Ref Expression
1 ringsubdi.b
 |-  B = ( Base ` R )
2 ringsubdi.t
 |-  .x. = ( .r ` R )
3 ringsubdi.m
 |-  .- = ( -g ` R )
4 ringsubdi.r
 |-  ( ph -> R e. Ring )
5 ringsubdi.x
 |-  ( ph -> X e. B )
6 ringsubdi.y
 |-  ( ph -> Y e. B )
7 ringsubdi.z
 |-  ( ph -> Z e. B )
8 ringrng
 |-  ( R e. Ring -> R e. Rng )
9 4 8 syl
 |-  ( ph -> R e. Rng )
10 1 2 3 9 5 6 7 rngsubdir
 |-  ( ph -> ( ( X .- Y ) .x. Z ) = ( ( X .x. Z ) .- ( Y .x. Z ) ) )