Description: Ring multiplication distributes over subtraction. ( subdir analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringsubdi.b | |- B = ( Base ` R ) |
|
| ringsubdi.t | |- .x. = ( .r ` R ) |
||
| ringsubdi.m | |- .- = ( -g ` R ) |
||
| ringsubdi.r | |- ( ph -> R e. Ring ) |
||
| ringsubdi.x | |- ( ph -> X e. B ) |
||
| ringsubdi.y | |- ( ph -> Y e. B ) |
||
| ringsubdi.z | |- ( ph -> Z e. B ) |
||
| Assertion | ringsubdir | |- ( ph -> ( ( X .- Y ) .x. Z ) = ( ( X .x. Z ) .- ( Y .x. Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringsubdi.b | |- B = ( Base ` R ) |
|
| 2 | ringsubdi.t | |- .x. = ( .r ` R ) |
|
| 3 | ringsubdi.m | |- .- = ( -g ` R ) |
|
| 4 | ringsubdi.r | |- ( ph -> R e. Ring ) |
|
| 5 | ringsubdi.x | |- ( ph -> X e. B ) |
|
| 6 | ringsubdi.y | |- ( ph -> Y e. B ) |
|
| 7 | ringsubdi.z | |- ( ph -> Z e. B ) |
|
| 8 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 9 | 4 8 | syl | |- ( ph -> R e. Rng ) |
| 10 | 1 2 3 9 5 6 7 | rngsubdir | |- ( ph -> ( ( X .- Y ) .x. Z ) = ( ( X .x. Z ) .- ( Y .x. Z ) ) ) |