| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringurd.b |
|- ( ph -> B = ( Base ` R ) ) |
| 2 |
|
ringurd.p |
|- ( ph -> .x. = ( .r ` R ) ) |
| 3 |
|
ringurd.z |
|- ( ph -> .1. e. B ) |
| 4 |
|
ringurd.i |
|- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
| 5 |
|
ringurd.j |
|- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = x ) |
| 6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 8 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 9 |
6 7 8
|
dfur2 |
|- ( 1r ` R ) = ( iota e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 10 |
3 1
|
eleqtrd |
|- ( ph -> .1. e. ( Base ` R ) ) |
| 11 |
4 5
|
jca |
|- ( ( ph /\ x e. B ) -> ( ( .1. .x. x ) = x /\ ( x .x. .1. ) = x ) ) |
| 12 |
11
|
ralrimiva |
|- ( ph -> A. x e. B ( ( .1. .x. x ) = x /\ ( x .x. .1. ) = x ) ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ x e. B ) -> .x. = ( .r ` R ) ) |
| 14 |
13
|
oveqd |
|- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = ( .1. ( .r ` R ) x ) ) |
| 15 |
14
|
eqeq1d |
|- ( ( ph /\ x e. B ) -> ( ( .1. .x. x ) = x <-> ( .1. ( .r ` R ) x ) = x ) ) |
| 16 |
13
|
oveqd |
|- ( ( ph /\ x e. B ) -> ( x .x. .1. ) = ( x ( .r ` R ) .1. ) ) |
| 17 |
16
|
eqeq1d |
|- ( ( ph /\ x e. B ) -> ( ( x .x. .1. ) = x <-> ( x ( .r ` R ) .1. ) = x ) ) |
| 18 |
15 17
|
anbi12d |
|- ( ( ph /\ x e. B ) -> ( ( ( .1. .x. x ) = x /\ ( x .x. .1. ) = x ) <-> ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) ) |
| 19 |
1 18
|
raleqbidva |
|- ( ph -> ( A. x e. B ( ( .1. .x. x ) = x /\ ( x .x. .1. ) = x ) <-> A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) ) |
| 20 |
12 19
|
mpbid |
|- ( ph -> A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) |
| 21 |
1
|
eleq2d |
|- ( ph -> ( e e. B <-> e e. ( Base ` R ) ) ) |
| 22 |
13
|
oveqd |
|- ( ( ph /\ x e. B ) -> ( e .x. x ) = ( e ( .r ` R ) x ) ) |
| 23 |
22
|
eqeq1d |
|- ( ( ph /\ x e. B ) -> ( ( e .x. x ) = x <-> ( e ( .r ` R ) x ) = x ) ) |
| 24 |
13
|
oveqd |
|- ( ( ph /\ x e. B ) -> ( x .x. e ) = ( x ( .r ` R ) e ) ) |
| 25 |
24
|
eqeq1d |
|- ( ( ph /\ x e. B ) -> ( ( x .x. e ) = x <-> ( x ( .r ` R ) e ) = x ) ) |
| 26 |
23 25
|
anbi12d |
|- ( ( ph /\ x e. B ) -> ( ( ( e .x. x ) = x /\ ( x .x. e ) = x ) <-> ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 27 |
1 26
|
raleqbidva |
|- ( ph -> ( A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) <-> A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 28 |
21 27
|
anbi12d |
|- ( ph -> ( ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) <-> ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) ) |
| 29 |
4
|
ralrimiva |
|- ( ph -> A. x e. B ( .1. .x. x ) = x ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ e e. B ) -> A. x e. B ( .1. .x. x ) = x ) |
| 31 |
|
simpr |
|- ( ( ph /\ e e. B ) -> e e. B ) |
| 32 |
|
simpr |
|- ( ( ( ph /\ e e. B ) /\ x = e ) -> x = e ) |
| 33 |
32
|
oveq2d |
|- ( ( ( ph /\ e e. B ) /\ x = e ) -> ( .1. .x. x ) = ( .1. .x. e ) ) |
| 34 |
33 32
|
eqeq12d |
|- ( ( ( ph /\ e e. B ) /\ x = e ) -> ( ( .1. .x. x ) = x <-> ( .1. .x. e ) = e ) ) |
| 35 |
31 34
|
rspcdv |
|- ( ( ph /\ e e. B ) -> ( A. x e. B ( .1. .x. x ) = x -> ( .1. .x. e ) = e ) ) |
| 36 |
30 35
|
mpd |
|- ( ( ph /\ e e. B ) -> ( .1. .x. e ) = e ) |
| 37 |
36
|
adantrr |
|- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> ( .1. .x. e ) = e ) |
| 38 |
3
|
adantr |
|- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> .1. e. B ) |
| 39 |
|
simprr |
|- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) |
| 40 |
|
oveq2 |
|- ( x = .1. -> ( e .x. x ) = ( e .x. .1. ) ) |
| 41 |
|
id |
|- ( x = .1. -> x = .1. ) |
| 42 |
40 41
|
eqeq12d |
|- ( x = .1. -> ( ( e .x. x ) = x <-> ( e .x. .1. ) = .1. ) ) |
| 43 |
|
oveq1 |
|- ( x = .1. -> ( x .x. e ) = ( .1. .x. e ) ) |
| 44 |
43 41
|
eqeq12d |
|- ( x = .1. -> ( ( x .x. e ) = x <-> ( .1. .x. e ) = .1. ) ) |
| 45 |
42 44
|
anbi12d |
|- ( x = .1. -> ( ( ( e .x. x ) = x /\ ( x .x. e ) = x ) <-> ( ( e .x. .1. ) = .1. /\ ( .1. .x. e ) = .1. ) ) ) |
| 46 |
45
|
rspcva |
|- ( ( .1. e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) -> ( ( e .x. .1. ) = .1. /\ ( .1. .x. e ) = .1. ) ) |
| 47 |
46
|
simprd |
|- ( ( .1. e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) -> ( .1. .x. e ) = .1. ) |
| 48 |
38 39 47
|
syl2anc |
|- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> ( .1. .x. e ) = .1. ) |
| 49 |
37 48
|
eqtr3d |
|- ( ( ph /\ ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) -> e = .1. ) |
| 50 |
49
|
ex |
|- ( ph -> ( ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) -> e = .1. ) ) |
| 51 |
28 50
|
sylbird |
|- ( ph -> ( ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) -> e = .1. ) ) |
| 52 |
51
|
alrimiv |
|- ( ph -> A. e ( ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) -> e = .1. ) ) |
| 53 |
|
eleq1 |
|- ( e = .1. -> ( e e. ( Base ` R ) <-> .1. e. ( Base ` R ) ) ) |
| 54 |
|
oveq1 |
|- ( e = .1. -> ( e ( .r ` R ) x ) = ( .1. ( .r ` R ) x ) ) |
| 55 |
54
|
eqeq1d |
|- ( e = .1. -> ( ( e ( .r ` R ) x ) = x <-> ( .1. ( .r ` R ) x ) = x ) ) |
| 56 |
55
|
ovanraleqv |
|- ( e = .1. -> ( A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) <-> A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) ) |
| 57 |
53 56
|
anbi12d |
|- ( e = .1. -> ( ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) <-> ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) ) ) |
| 58 |
57
|
eqeu |
|- ( ( .1. e. ( Base ` R ) /\ ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) /\ A. e ( ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) -> e = .1. ) ) -> E! e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 59 |
10 10 20 52 58
|
syl121anc |
|- ( ph -> E! e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) |
| 60 |
57
|
iota2 |
|- ( ( .1. e. B /\ E! e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) -> ( ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) <-> ( iota e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) = .1. ) ) |
| 61 |
3 59 60
|
syl2anc |
|- ( ph -> ( ( .1. e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( .1. ( .r ` R ) x ) = x /\ ( x ( .r ` R ) .1. ) = x ) ) <-> ( iota e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) = .1. ) ) |
| 62 |
10 20 61
|
mpbi2and |
|- ( ph -> ( iota e ( e e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( e ( .r ` R ) x ) = x /\ ( x ( .r ` R ) e ) = x ) ) ) = .1. ) |
| 63 |
9 62
|
eqtr2id |
|- ( ph -> .1. = ( 1r ` R ) ) |