Description: Tuple-wise multiplication closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringvcl.b | |- B = ( Base ` R ) |
|
| ringvcl.t | |- .x. = ( .r ` R ) |
||
| Assertion | ringvcl | |- ( ( R e. Ring /\ X e. ( B ^m I ) /\ Y e. ( B ^m I ) ) -> ( X oF .x. Y ) e. ( B ^m I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringvcl.b | |- B = ( Base ` R ) |
|
| 2 | ringvcl.t | |- .x. = ( .r ` R ) |
|
| 3 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 4 | 3 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 5 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 6 | 3 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 7 | 5 6 | mndvcl | |- ( ( ( mulGrp ` R ) e. Mnd /\ X e. ( B ^m I ) /\ Y e. ( B ^m I ) ) -> ( X oF .x. Y ) e. ( B ^m I ) ) |
| 8 | 4 7 | syl3an1 | |- ( ( R e. Ring /\ X e. ( B ^m I ) /\ Y e. ( B ^m I ) ) -> ( X oF .x. Y ) e. ( B ^m I ) ) |