Metamath Proof Explorer


Theorem ringvcl

Description: Tuple-wise multiplication closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses ringvcl.b
|- B = ( Base ` R )
ringvcl.t
|- .x. = ( .r ` R )
Assertion ringvcl
|- ( ( R e. Ring /\ X e. ( B ^m I ) /\ Y e. ( B ^m I ) ) -> ( X oF .x. Y ) e. ( B ^m I ) )

Proof

Step Hyp Ref Expression
1 ringvcl.b
 |-  B = ( Base ` R )
2 ringvcl.t
 |-  .x. = ( .r ` R )
3 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
4 3 ringmgp
 |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd )
5 3 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
6 3 2 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
7 5 6 mndvcl
 |-  ( ( ( mulGrp ` R ) e. Mnd /\ X e. ( B ^m I ) /\ Y e. ( B ^m I ) ) -> ( X oF .x. Y ) e. ( B ^m I ) )
8 4 7 syl3an1
 |-  ( ( R e. Ring /\ X e. ( B ^m I ) /\ Y e. ( B ^m I ) ) -> ( X oF .x. Y ) e. ( B ^m I ) )