Metamath Proof Explorer


Theorem rintn0

Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion rintn0
|- ( ( X C_ ~P A /\ X =/= (/) ) -> ( A i^i |^| X ) = |^| X )

Proof

Step Hyp Ref Expression
1 intssuni2
 |-  ( ( X C_ ~P A /\ X =/= (/) ) -> |^| X C_ U. ~P A )
2 ssid
 |-  ~P A C_ ~P A
3 sspwuni
 |-  ( ~P A C_ ~P A <-> U. ~P A C_ A )
4 2 3 mpbi
 |-  U. ~P A C_ A
5 1 4 sstrdi
 |-  ( ( X C_ ~P A /\ X =/= (/) ) -> |^| X C_ A )
6 sseqin2
 |-  ( |^| X C_ A <-> ( A i^i |^| X ) = |^| X )
7 5 6 sylib
 |-  ( ( X C_ ~P A /\ X =/= (/) ) -> ( A i^i |^| X ) = |^| X )