Step |
Hyp |
Ref |
Expression |
1 |
|
rinvbij.1 |
|- Fun F |
2 |
|
rinvbij.2 |
|- `' F = F |
3 |
|
rinvbij.3a |
|- ( F " A ) C_ B |
4 |
|
rinvbij.3b |
|- ( F " B ) C_ A |
5 |
|
rinvbij.4a |
|- A C_ dom F |
6 |
|
rinvbij.4b |
|- B C_ dom F |
7 |
|
fdmrn |
|- ( Fun F <-> F : dom F --> ran F ) |
8 |
1 7
|
mpbi |
|- F : dom F --> ran F |
9 |
2
|
funeqi |
|- ( Fun `' F <-> Fun F ) |
10 |
1 9
|
mpbir |
|- Fun `' F |
11 |
|
df-f1 |
|- ( F : dom F -1-1-> ran F <-> ( F : dom F --> ran F /\ Fun `' F ) ) |
12 |
8 10 11
|
mpbir2an |
|- F : dom F -1-1-> ran F |
13 |
|
f1ores |
|- ( ( F : dom F -1-1-> ran F /\ A C_ dom F ) -> ( F |` A ) : A -1-1-onto-> ( F " A ) ) |
14 |
12 5 13
|
mp2an |
|- ( F |` A ) : A -1-1-onto-> ( F " A ) |
15 |
|
funimass3 |
|- ( ( Fun F /\ B C_ dom F ) -> ( ( F " B ) C_ A <-> B C_ ( `' F " A ) ) ) |
16 |
1 6 15
|
mp2an |
|- ( ( F " B ) C_ A <-> B C_ ( `' F " A ) ) |
17 |
4 16
|
mpbi |
|- B C_ ( `' F " A ) |
18 |
2
|
imaeq1i |
|- ( `' F " A ) = ( F " A ) |
19 |
17 18
|
sseqtri |
|- B C_ ( F " A ) |
20 |
3 19
|
eqssi |
|- ( F " A ) = B |
21 |
|
f1oeq3 |
|- ( ( F " A ) = B -> ( ( F |` A ) : A -1-1-onto-> ( F " A ) <-> ( F |` A ) : A -1-1-onto-> B ) ) |
22 |
20 21
|
ax-mp |
|- ( ( F |` A ) : A -1-1-onto-> ( F " A ) <-> ( F |` A ) : A -1-1-onto-> B ) |
23 |
14 22
|
mpbi |
|- ( F |` A ) : A -1-1-onto-> B |