| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rinvmod.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | rinvmod.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | rinvmod.p |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | rinvmod.m |  |-  ( ph -> G e. CMnd ) | 
						
							| 5 |  | rinvmod.a |  |-  ( ph -> A e. B ) | 
						
							| 6 | 4 | adantr |  |-  ( ( ph /\ w e. B ) -> G e. CMnd ) | 
						
							| 7 |  | simpr |  |-  ( ( ph /\ w e. B ) -> w e. B ) | 
						
							| 8 | 5 | adantr |  |-  ( ( ph /\ w e. B ) -> A e. B ) | 
						
							| 9 | 1 3 | cmncom |  |-  ( ( G e. CMnd /\ w e. B /\ A e. B ) -> ( w .+ A ) = ( A .+ w ) ) | 
						
							| 10 | 6 7 8 9 | syl3anc |  |-  ( ( ph /\ w e. B ) -> ( w .+ A ) = ( A .+ w ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = ( A .+ w ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( A .+ w ) = .0. ) | 
						
							| 13 | 11 12 | eqtrd |  |-  ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = .0. ) | 
						
							| 14 | 13 12 | jca |  |-  ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) | 
						
							| 15 | 14 | ex |  |-  ( ( ph /\ w e. B ) -> ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) ) | 
						
							| 16 | 15 | ralrimiva |  |-  ( ph -> A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) ) | 
						
							| 17 |  | cmnmnd |  |-  ( G e. CMnd -> G e. Mnd ) | 
						
							| 18 | 4 17 | syl |  |-  ( ph -> G e. Mnd ) | 
						
							| 19 | 1 2 3 18 5 | mndinvmod |  |-  ( ph -> E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) | 
						
							| 20 |  | rmoim |  |-  ( A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) -> ( E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) -> E* w e. B ( A .+ w ) = .0. ) ) | 
						
							| 21 | 16 19 20 | sylc |  |-  ( ph -> E* w e. B ( A .+ w ) = .0. ) |