Metamath Proof Explorer


Theorem rinvmod

Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo . (Contributed by AV, 31-Dec-2023)

Ref Expression
Hypotheses rinvmod.b
|- B = ( Base ` G )
rinvmod.0
|- .0. = ( 0g ` G )
rinvmod.p
|- .+ = ( +g ` G )
rinvmod.m
|- ( ph -> G e. CMnd )
rinvmod.a
|- ( ph -> A e. B )
Assertion rinvmod
|- ( ph -> E* w e. B ( A .+ w ) = .0. )

Proof

Step Hyp Ref Expression
1 rinvmod.b
 |-  B = ( Base ` G )
2 rinvmod.0
 |-  .0. = ( 0g ` G )
3 rinvmod.p
 |-  .+ = ( +g ` G )
4 rinvmod.m
 |-  ( ph -> G e. CMnd )
5 rinvmod.a
 |-  ( ph -> A e. B )
6 4 adantr
 |-  ( ( ph /\ w e. B ) -> G e. CMnd )
7 simpr
 |-  ( ( ph /\ w e. B ) -> w e. B )
8 5 adantr
 |-  ( ( ph /\ w e. B ) -> A e. B )
9 1 3 cmncom
 |-  ( ( G e. CMnd /\ w e. B /\ A e. B ) -> ( w .+ A ) = ( A .+ w ) )
10 6 7 8 9 syl3anc
 |-  ( ( ph /\ w e. B ) -> ( w .+ A ) = ( A .+ w ) )
11 10 adantr
 |-  ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = ( A .+ w ) )
12 simpr
 |-  ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( A .+ w ) = .0. )
13 11 12 eqtrd
 |-  ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = .0. )
14 13 12 jca
 |-  ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) )
15 14 ex
 |-  ( ( ph /\ w e. B ) -> ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) )
16 15 ralrimiva
 |-  ( ph -> A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) )
17 cmnmnd
 |-  ( G e. CMnd -> G e. Mnd )
18 4 17 syl
 |-  ( ph -> G e. Mnd )
19 1 2 3 18 5 mndinvmod
 |-  ( ph -> E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) )
20 rmoim
 |-  ( A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) -> ( E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) -> E* w e. B ( A .+ w ) = .0. ) )
21 16 19 20 sylc
 |-  ( ph -> E* w e. B ( A .+ w ) = .0. )