Metamath Proof Explorer


Theorem riota1a

Description: Property of iota. (Contributed by NM, 23-Aug-2011)

Ref Expression
Assertion riota1a
|- ( ( x e. A /\ E! x e. A ph ) -> ( ph <-> ( iota x ( x e. A /\ ph ) ) = x ) )

Proof

Step Hyp Ref Expression
1 ibar
 |-  ( x e. A -> ( ph <-> ( x e. A /\ ph ) ) )
2 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
3 iota1
 |-  ( E! x ( x e. A /\ ph ) -> ( ( x e. A /\ ph ) <-> ( iota x ( x e. A /\ ph ) ) = x ) )
4 2 3 sylbi
 |-  ( E! x e. A ph -> ( ( x e. A /\ ph ) <-> ( iota x ( x e. A /\ ph ) ) = x ) )
5 1 4 sylan9bb
 |-  ( ( x e. A /\ E! x e. A ph ) -> ( ph <-> ( iota x ( x e. A /\ ph ) ) = x ) )