Description: This theorem shows a condition that allows to represent a descriptor with a class expression B . (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 15-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riota2f.1 | |- F/_ x B |
|
| riota2f.2 | |- F/ x ps |
||
| riota2f.3 | |- ( x = B -> ( ph <-> ps ) ) |
||
| Assertion | riota2f | |- ( ( B e. A /\ E! x e. A ph ) -> ( ps <-> ( iota_ x e. A ph ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota2f.1 | |- F/_ x B |
|
| 2 | riota2f.2 | |- F/ x ps |
|
| 3 | riota2f.3 | |- ( x = B -> ( ph <-> ps ) ) |
|
| 4 | 1 | nfel1 | |- F/ x B e. A |
| 5 | 1 | a1i | |- ( B e. A -> F/_ x B ) |
| 6 | 2 | a1i | |- ( B e. A -> F/ x ps ) |
| 7 | id | |- ( B e. A -> B e. A ) |
|
| 8 | 3 | adantl | |- ( ( B e. A /\ x = B ) -> ( ph <-> ps ) ) |
| 9 | 4 5 6 7 8 | riota2df | |- ( ( B e. A /\ E! x e. A ph ) -> ( ps <-> ( iota_ x e. A ph ) = B ) ) |