Metamath Proof Explorer


Theorem riota5

Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011) (Revised by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypotheses riota5.1
|- ( ph -> B e. A )
riota5.2
|- ( ( ph /\ x e. A ) -> ( ps <-> x = B ) )
Assertion riota5
|- ( ph -> ( iota_ x e. A ps ) = B )

Proof

Step Hyp Ref Expression
1 riota5.1
 |-  ( ph -> B e. A )
2 riota5.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> x = B ) )
3 nfcvd
 |-  ( ph -> F/_ x B )
4 3 1 2 riota5f
 |-  ( ph -> ( iota_ x e. A ps ) = B )