Metamath Proof Explorer


Theorem riotabidva

Description: Equivalent wff's yield equal restricted class abstractions (deduction form). ( rabbidva analog.) (Contributed by NM, 17-Jan-2012)

Ref Expression
Hypothesis riotabidva.1
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion riotabidva
|- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. A ch ) )

Proof

Step Hyp Ref Expression
1 riotabidva.1
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
2 1 pm5.32da
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) )
3 2 iotabidv
 |-  ( ph -> ( iota x ( x e. A /\ ps ) ) = ( iota x ( x e. A /\ ch ) ) )
4 df-riota
 |-  ( iota_ x e. A ps ) = ( iota x ( x e. A /\ ps ) )
5 df-riota
 |-  ( iota_ x e. A ch ) = ( iota x ( x e. A /\ ch ) )
6 3 4 5 3eqtr4g
 |-  ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. A ch ) )