Description: Equivalent wff's yield equal restricted class abstractions (deduction form). ( rabbidva analog.) (Contributed by NM, 17-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | riotabidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| Assertion | riotabidva | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotabidva.1 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
| 2 | 1 | pm5.32da | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. A /\ ch ) ) ) |
| 3 | 2 | iotabidv | |- ( ph -> ( iota x ( x e. A /\ ps ) ) = ( iota x ( x e. A /\ ch ) ) ) |
| 4 | df-riota | |- ( iota_ x e. A ps ) = ( iota x ( x e. A /\ ps ) ) |
|
| 5 | df-riota | |- ( iota_ x e. A ch ) = ( iota x ( x e. A /\ ch ) ) |
|
| 6 | 3 4 5 | 3eqtr4g | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. A ch ) ) |