Metamath Proof Explorer


Theorem riotacl2

Description: Membership law for "the unique element in A such that ph ". (Contributed by NM, 21-Aug-2011) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion riotacl2
|- ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x e. A | ph } )

Proof

Step Hyp Ref Expression
1 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
2 iotacl
 |-  ( E! x ( x e. A /\ ph ) -> ( iota x ( x e. A /\ ph ) ) e. { x | ( x e. A /\ ph ) } )
3 1 2 sylbi
 |-  ( E! x e. A ph -> ( iota x ( x e. A /\ ph ) ) e. { x | ( x e. A /\ ph ) } )
4 df-riota
 |-  ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) )
5 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
6 3 4 5 3eltr4g
 |-  ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x e. A | ph } )