Description: Membership law for "the unique element in A such that ph ". (Contributed by NM, 21-Aug-2011) (Revised by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | riotacl2 | |- ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x e. A | ph } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu | |- ( E! x e. A ph <-> E! x ( x e. A /\ ph ) ) |
|
2 | iotacl | |- ( E! x ( x e. A /\ ph ) -> ( iota x ( x e. A /\ ph ) ) e. { x | ( x e. A /\ ph ) } ) |
|
3 | 1 2 | sylbi | |- ( E! x e. A ph -> ( iota x ( x e. A /\ ph ) ) e. { x | ( x e. A /\ ph ) } ) |
4 | df-riota | |- ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) ) |
|
5 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
6 | 3 4 5 | 3eltr4g | |- ( E! x e. A ph -> ( iota_ x e. A ph ) e. { x e. A | ph } ) |