Metamath Proof Explorer


Theorem riotaclbBAD

Description: Closure of restricted iota. (Contributed by NM, 15-Sep-2011)

Ref Expression
Hypothesis riotaclb.1
|- A e. _V
Assertion riotaclbBAD
|- ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A )

Proof

Step Hyp Ref Expression
1 riotaclb.1
 |-  A e. _V
2 riotaclbgBAD
 |-  ( A e. _V -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) )
3 1 2 ax-mp
 |-  ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A )