| Step |
Hyp |
Ref |
Expression |
| 1 |
|
riotacl |
|- ( E! x e. A ph -> ( iota_ x e. A ph ) e. A ) |
| 2 |
|
undefnel2 |
|- ( A e. V -> -. ( Undef ` A ) e. A ) |
| 3 |
|
iffalse |
|- ( -. E! x e. A ph -> if ( E! x e. A ph , ( iota x ( x e. A /\ ph ) ) , ( Undef ` { x | x e. A } ) ) = ( Undef ` { x | x e. A } ) ) |
| 4 |
|
ax-riotaBAD |
|- ( iota_ x e. A ph ) = if ( E! x e. A ph , ( iota x ( x e. A /\ ph ) ) , ( Undef ` { x | x e. A } ) ) |
| 5 |
|
abid1 |
|- A = { x | x e. A } |
| 6 |
5
|
fveq2i |
|- ( Undef ` A ) = ( Undef ` { x | x e. A } ) |
| 7 |
3 4 6
|
3eqtr4g |
|- ( -. E! x e. A ph -> ( iota_ x e. A ph ) = ( Undef ` A ) ) |
| 8 |
7
|
eleq1d |
|- ( -. E! x e. A ph -> ( ( iota_ x e. A ph ) e. A <-> ( Undef ` A ) e. A ) ) |
| 9 |
8
|
notbid |
|- ( -. E! x e. A ph -> ( -. ( iota_ x e. A ph ) e. A <-> -. ( Undef ` A ) e. A ) ) |
| 10 |
2 9
|
syl5ibrcom |
|- ( A e. V -> ( -. E! x e. A ph -> -. ( iota_ x e. A ph ) e. A ) ) |
| 11 |
10
|
con4d |
|- ( A e. V -> ( ( iota_ x e. A ph ) e. A -> E! x e. A ph ) ) |
| 12 |
1 11
|
impbid2 |
|- ( A e. V -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) ) |