Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaeqbidv.1 | |- ( ph -> A = B ) |
|
| riotaeqbidv.2 | |- ( ph -> ( ps <-> ch ) ) |
||
| Assertion | riotaeqbidv | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqbidv.1 | |- ( ph -> A = B ) |
|
| 2 | riotaeqbidv.2 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3 | 2 | riotabidv | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. A ch ) ) |
| 4 | 1 | riotaeqdv | |- ( ph -> ( iota_ x e. A ch ) = ( iota_ x e. B ch ) ) |
| 5 | 3 4 | eqtrd | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ch ) ) |