Metamath Proof Explorer


Theorem riotaeqbidva

Description: Equivalent wff's yield equal restricted definition binders (deduction form). ( raleqbidva analog.) (Contributed by Thierry Arnoux, 29-Jan-2025)

Ref Expression
Hypotheses riotaeqbidva.1
|- ( ph -> A = B )
riotaeqbidva.2
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion riotaeqbidva
|- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ch ) )

Proof

Step Hyp Ref Expression
1 riotaeqbidva.1
 |-  ( ph -> A = B )
2 riotaeqbidva.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 riotabidva
 |-  ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. A ch ) )
4 1 riotaeqdv
 |-  ( ph -> ( iota_ x e. A ch ) = ( iota_ x e. B ch ) )
5 3 4 eqtrd
 |-  ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ch ) )