Description: Equivalent wff's yield equal restricted definition binders (deduction form). ( raleqbidva analog.) (Contributed by Thierry Arnoux, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | riotaeqbidva.1 | |- ( ph -> A = B ) |
|
riotaeqbidva.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
||
Assertion | riotaeqbidva | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbidva.1 | |- ( ph -> A = B ) |
|
2 | riotaeqbidva.2 | |- ( ( ph /\ x e. A ) -> ( ps <-> ch ) ) |
|
3 | 2 | riotabidva | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. A ch ) ) |
4 | 1 | riotaeqdv | |- ( ph -> ( iota_ x e. A ch ) = ( iota_ x e. B ch ) ) |
5 | 3 4 | eqtrd | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ch ) ) |