Metamath Proof Explorer


Theorem riotaeqdv

Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011)

Ref Expression
Hypothesis riotaeqdv.1
|- ( ph -> A = B )
Assertion riotaeqdv
|- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ps ) )

Proof

Step Hyp Ref Expression
1 riotaeqdv.1
 |-  ( ph -> A = B )
2 1 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
3 2 anbi1d
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ps ) ) )
4 3 iotabidv
 |-  ( ph -> ( iota x ( x e. A /\ ps ) ) = ( iota x ( x e. B /\ ps ) ) )
5 df-riota
 |-  ( iota_ x e. A ps ) = ( iota x ( x e. A /\ ps ) )
6 df-riota
 |-  ( iota_ x e. B ps ) = ( iota x ( x e. B /\ ps ) )
7 4 5 6 3eqtr4g
 |-  ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ps ) )