Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | riotaeqdv.1 | |- ( ph -> A = B ) |
|
Assertion | riotaeqdv | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqdv.1 | |- ( ph -> A = B ) |
|
2 | 1 | eleq2d | |- ( ph -> ( x e. A <-> x e. B ) ) |
3 | 2 | anbi1d | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ps ) ) ) |
4 | 3 | iotabidv | |- ( ph -> ( iota x ( x e. A /\ ps ) ) = ( iota x ( x e. B /\ ps ) ) ) |
5 | df-riota | |- ( iota_ x e. A ps ) = ( iota x ( x e. A /\ ps ) ) |
|
6 | df-riota | |- ( iota_ x e. B ps ) = ( iota x ( x e. B /\ ps ) ) |
|
7 | 4 5 6 | 3eqtr4g | |- ( ph -> ( iota_ x e. A ps ) = ( iota_ x e. B ps ) ) |