Step |
Hyp |
Ref |
Expression |
1 |
|
riotaeqimp.i |
|- I = ( iota_ a e. V X = A ) |
2 |
|
riotaeqimp.j |
|- J = ( iota_ a e. V Y = A ) |
3 |
|
riotaeqimp.x |
|- ( ph -> E! a e. V X = A ) |
4 |
|
riotaeqimp.y |
|- ( ph -> E! a e. V Y = A ) |
5 |
2
|
eqcomi |
|- ( iota_ a e. V Y = A ) = J |
6 |
5
|
eqeq2i |
|- ( I = ( iota_ a e. V Y = A ) <-> I = J ) |
7 |
6
|
a1i |
|- ( ph -> ( I = ( iota_ a e. V Y = A ) <-> I = J ) ) |
8 |
7
|
bicomd |
|- ( ph -> ( I = J <-> I = ( iota_ a e. V Y = A ) ) ) |
9 |
8
|
biimpa |
|- ( ( ph /\ I = J ) -> I = ( iota_ a e. V Y = A ) ) |
10 |
1
|
eqeq1i |
|- ( I = J <-> ( iota_ a e. V X = A ) = J ) |
11 |
|
riotacl |
|- ( E! a e. V Y = A -> ( iota_ a e. V Y = A ) e. V ) |
12 |
4 11
|
syl |
|- ( ph -> ( iota_ a e. V Y = A ) e. V ) |
13 |
2 12
|
eqeltrid |
|- ( ph -> J e. V ) |
14 |
|
nfv |
|- F/ a J e. V |
15 |
|
nfcvd |
|- ( J e. V -> F/_ a J ) |
16 |
|
nfcvd |
|- ( J e. V -> F/_ a X ) |
17 |
15
|
nfcsb1d |
|- ( J e. V -> F/_ a [_ J / a ]_ A ) |
18 |
16 17
|
nfeqd |
|- ( J e. V -> F/ a X = [_ J / a ]_ A ) |
19 |
|
id |
|- ( J e. V -> J e. V ) |
20 |
|
csbeq1a |
|- ( a = J -> A = [_ J / a ]_ A ) |
21 |
20
|
eqeq2d |
|- ( a = J -> ( X = A <-> X = [_ J / a ]_ A ) ) |
22 |
21
|
adantl |
|- ( ( J e. V /\ a = J ) -> ( X = A <-> X = [_ J / a ]_ A ) ) |
23 |
14 15 18 19 22
|
riota2df |
|- ( ( J e. V /\ E! a e. V X = A ) -> ( X = [_ J / a ]_ A <-> ( iota_ a e. V X = A ) = J ) ) |
24 |
23
|
bicomd |
|- ( ( J e. V /\ E! a e. V X = A ) -> ( ( iota_ a e. V X = A ) = J <-> X = [_ J / a ]_ A ) ) |
25 |
13 3 24
|
syl2anc |
|- ( ph -> ( ( iota_ a e. V X = A ) = J <-> X = [_ J / a ]_ A ) ) |
26 |
10 25
|
bitrid |
|- ( ph -> ( I = J <-> X = [_ J / a ]_ A ) ) |
27 |
26
|
biimpa |
|- ( ( ph /\ I = J ) -> X = [_ J / a ]_ A ) |
28 |
|
riotacl |
|- ( E! a e. V X = A -> ( iota_ a e. V X = A ) e. V ) |
29 |
3 28
|
syl |
|- ( ph -> ( iota_ a e. V X = A ) e. V ) |
30 |
1 29
|
eqeltrid |
|- ( ph -> I e. V ) |
31 |
|
nfv |
|- F/ a I e. V |
32 |
|
nfcvd |
|- ( I e. V -> F/_ a I ) |
33 |
|
nfcvd |
|- ( I e. V -> F/_ a Y ) |
34 |
32
|
nfcsb1d |
|- ( I e. V -> F/_ a [_ I / a ]_ A ) |
35 |
33 34
|
nfeqd |
|- ( I e. V -> F/ a Y = [_ I / a ]_ A ) |
36 |
|
id |
|- ( I e. V -> I e. V ) |
37 |
|
csbeq1a |
|- ( a = I -> A = [_ I / a ]_ A ) |
38 |
37
|
eqeq2d |
|- ( a = I -> ( Y = A <-> Y = [_ I / a ]_ A ) ) |
39 |
38
|
adantl |
|- ( ( I e. V /\ a = I ) -> ( Y = A <-> Y = [_ I / a ]_ A ) ) |
40 |
31 32 35 36 39
|
riota2df |
|- ( ( I e. V /\ E! a e. V Y = A ) -> ( Y = [_ I / a ]_ A <-> ( iota_ a e. V Y = A ) = I ) ) |
41 |
30 4 40
|
syl2anc |
|- ( ph -> ( Y = [_ I / a ]_ A <-> ( iota_ a e. V Y = A ) = I ) ) |
42 |
|
eqcom |
|- ( ( iota_ a e. V Y = A ) = I <-> I = ( iota_ a e. V Y = A ) ) |
43 |
41 42
|
bitrdi |
|- ( ph -> ( Y = [_ I / a ]_ A <-> I = ( iota_ a e. V Y = A ) ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ I = J ) -> ( Y = [_ I / a ]_ A <-> I = ( iota_ a e. V Y = A ) ) ) |
45 |
|
csbeq1 |
|- ( J = I -> [_ J / a ]_ A = [_ I / a ]_ A ) |
46 |
45
|
eqcoms |
|- ( I = J -> [_ J / a ]_ A = [_ I / a ]_ A ) |
47 |
|
eqeq12 |
|- ( ( X = [_ J / a ]_ A /\ Y = [_ I / a ]_ A ) -> ( X = Y <-> [_ J / a ]_ A = [_ I / a ]_ A ) ) |
48 |
47
|
ancoms |
|- ( ( Y = [_ I / a ]_ A /\ X = [_ J / a ]_ A ) -> ( X = Y <-> [_ J / a ]_ A = [_ I / a ]_ A ) ) |
49 |
46 48
|
syl5ibrcom |
|- ( I = J -> ( ( Y = [_ I / a ]_ A /\ X = [_ J / a ]_ A ) -> X = Y ) ) |
50 |
49
|
expd |
|- ( I = J -> ( Y = [_ I / a ]_ A -> ( X = [_ J / a ]_ A -> X = Y ) ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ I = J ) -> ( Y = [_ I / a ]_ A -> ( X = [_ J / a ]_ A -> X = Y ) ) ) |
52 |
44 51
|
sylbird |
|- ( ( ph /\ I = J ) -> ( I = ( iota_ a e. V Y = A ) -> ( X = [_ J / a ]_ A -> X = Y ) ) ) |
53 |
9 27 52
|
mp2d |
|- ( ( ph /\ I = J ) -> X = Y ) |