Step |
Hyp |
Ref |
Expression |
1 |
|
riotaprop.0 |
|- F/ x ps |
2 |
|
riotaprop.1 |
|- B = ( iota_ x e. A ph ) |
3 |
|
riotaprop.2 |
|- ( x = B -> ( ph <-> ps ) ) |
4 |
|
riotacl |
|- ( E! x e. A ph -> ( iota_ x e. A ph ) e. A ) |
5 |
2 4
|
eqeltrid |
|- ( E! x e. A ph -> B e. A ) |
6 |
2
|
eqcomi |
|- ( iota_ x e. A ph ) = B |
7 |
|
nfriota1 |
|- F/_ x ( iota_ x e. A ph ) |
8 |
2 7
|
nfcxfr |
|- F/_ x B |
9 |
8 1 3
|
riota2f |
|- ( ( B e. A /\ E! x e. A ph ) -> ( ps <-> ( iota_ x e. A ph ) = B ) ) |
10 |
6 9
|
mpbiri |
|- ( ( B e. A /\ E! x e. A ph ) -> ps ) |
11 |
5 10
|
mpancom |
|- ( E! x e. A ph -> ps ) |
12 |
5 11
|
jca |
|- ( E! x e. A ph -> ( B e. A /\ ps ) ) |