Metamath Proof Explorer


Theorem riotaprop

Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013)

Ref Expression
Hypotheses riotaprop.0
|- F/ x ps
riotaprop.1
|- B = ( iota_ x e. A ph )
riotaprop.2
|- ( x = B -> ( ph <-> ps ) )
Assertion riotaprop
|- ( E! x e. A ph -> ( B e. A /\ ps ) )

Proof

Step Hyp Ref Expression
1 riotaprop.0
 |-  F/ x ps
2 riotaprop.1
 |-  B = ( iota_ x e. A ph )
3 riotaprop.2
 |-  ( x = B -> ( ph <-> ps ) )
4 riotacl
 |-  ( E! x e. A ph -> ( iota_ x e. A ph ) e. A )
5 2 4 eqeltrid
 |-  ( E! x e. A ph -> B e. A )
6 2 eqcomi
 |-  ( iota_ x e. A ph ) = B
7 nfriota1
 |-  F/_ x ( iota_ x e. A ph )
8 2 7 nfcxfr
 |-  F/_ x B
9 8 1 3 riota2f
 |-  ( ( B e. A /\ E! x e. A ph ) -> ( ps <-> ( iota_ x e. A ph ) = B ) )
10 6 9 mpbiri
 |-  ( ( B e. A /\ E! x e. A ph ) -> ps )
11 5 10 mpancom
 |-  ( E! x e. A ph -> ps )
12 5 11 jca
 |-  ( E! x e. A ph -> ( B e. A /\ ps ) )