Metamath Proof Explorer


Theorem riotaund

Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016) (Revised by NM, 13-Sep-2018)

Ref Expression
Assertion riotaund
|- ( -. E! x e. A ph -> ( iota_ x e. A ph ) = (/) )

Proof

Step Hyp Ref Expression
1 df-riota
 |-  ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) )
2 df-reu
 |-  ( E! x e. A ph <-> E! x ( x e. A /\ ph ) )
3 iotanul
 |-  ( -. E! x ( x e. A /\ ph ) -> ( iota x ( x e. A /\ ph ) ) = (/) )
4 2 3 sylnbi
 |-  ( -. E! x e. A ph -> ( iota x ( x e. A /\ ph ) ) = (/) )
5 1 4 eqtrid
 |-  ( -. E! x e. A ph -> ( iota_ x e. A ph ) = (/) )