Step |
Hyp |
Ref |
Expression |
1 |
|
0nn0 |
|- 0 e. NN0 |
2 |
|
risefacval |
|- ( ( A e. CC /\ 0 e. NN0 ) -> ( A RiseFac 0 ) = prod_ k e. ( 0 ... ( 0 - 1 ) ) ( A + k ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. CC -> ( A RiseFac 0 ) = prod_ k e. ( 0 ... ( 0 - 1 ) ) ( A + k ) ) |
4 |
|
risefall0lem |
|- ( 0 ... ( 0 - 1 ) ) = (/) |
5 |
4
|
prodeq1i |
|- prod_ k e. ( 0 ... ( 0 - 1 ) ) ( A + k ) = prod_ k e. (/) ( A + k ) |
6 |
|
prod0 |
|- prod_ k e. (/) ( A + k ) = 1 |
7 |
5 6
|
eqtri |
|- prod_ k e. ( 0 ... ( 0 - 1 ) ) ( A + k ) = 1 |
8 |
3 7
|
eqtrdi |
|- ( A e. CC -> ( A RiseFac 0 ) = 1 ) |