| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 2 | 1 | oveq2i |  |-  ( A RiseFac ( 0 + 1 ) ) = ( A RiseFac 1 ) | 
						
							| 3 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 4 |  | risefacp1 |  |-  ( ( A e. CC /\ 0 e. NN0 ) -> ( A RiseFac ( 0 + 1 ) ) = ( ( A RiseFac 0 ) x. ( A + 0 ) ) ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( A e. CC -> ( A RiseFac ( 0 + 1 ) ) = ( ( A RiseFac 0 ) x. ( A + 0 ) ) ) | 
						
							| 6 |  | risefac0 |  |-  ( A e. CC -> ( A RiseFac 0 ) = 1 ) | 
						
							| 7 |  | addrid |  |-  ( A e. CC -> ( A + 0 ) = A ) | 
						
							| 8 | 6 7 | oveq12d |  |-  ( A e. CC -> ( ( A RiseFac 0 ) x. ( A + 0 ) ) = ( 1 x. A ) ) | 
						
							| 9 |  | mullid |  |-  ( A e. CC -> ( 1 x. A ) = A ) | 
						
							| 10 | 5 8 9 | 3eqtrd |  |-  ( A e. CC -> ( A RiseFac ( 0 + 1 ) ) = A ) | 
						
							| 11 | 2 10 | eqtr3id |  |-  ( A e. CC -> ( A RiseFac 1 ) = A ) |