Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risefaccl | |- ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) e. CC ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssid | |- CC C_ CC | |
| 2 | ax-1cn | |- 1 e. CC | |
| 3 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | |
| 4 | nn0cn | |- ( k e. NN0 -> k e. CC ) | |
| 5 | addcl | |- ( ( A e. CC /\ k e. CC ) -> ( A + k ) e. CC ) | |
| 6 | 4 5 | sylan2 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A + k ) e. CC ) | 
| 7 | 1 2 3 6 | risefaccllem | |- ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) e. CC ) |