Metamath Proof Explorer


Theorem risefaccllem

Description: Lemma for rising factorial closure laws. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Hypotheses risefallfaccllem.1
|- S C_ CC
risefallfaccllem.2
|- 1 e. S
risefallfaccllem.3
|- ( ( x e. S /\ y e. S ) -> ( x x. y ) e. S )
risefaccllem.4
|- ( ( A e. S /\ k e. NN0 ) -> ( A + k ) e. S )
Assertion risefaccllem
|- ( ( A e. S /\ N e. NN0 ) -> ( A RiseFac N ) e. S )

Proof

Step Hyp Ref Expression
1 risefallfaccllem.1
 |-  S C_ CC
2 risefallfaccllem.2
 |-  1 e. S
3 risefallfaccllem.3
 |-  ( ( x e. S /\ y e. S ) -> ( x x. y ) e. S )
4 risefaccllem.4
 |-  ( ( A e. S /\ k e. NN0 ) -> ( A + k ) e. S )
5 1 sseli
 |-  ( A e. S -> A e. CC )
6 risefacval
 |-  ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A + k ) )
7 5 6 sylan
 |-  ( ( A e. S /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A + k ) )
8 1 a1i
 |-  ( A e. S -> S C_ CC )
9 3 adantl
 |-  ( ( A e. S /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S )
10 fzfid
 |-  ( A e. S -> ( 0 ... ( N - 1 ) ) e. Fin )
11 elfznn0
 |-  ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 )
12 11 4 sylan2
 |-  ( ( A e. S /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A + k ) e. S )
13 2 a1i
 |-  ( A e. S -> 1 e. S )
14 8 9 10 12 13 fprodcllem
 |-  ( A e. S -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A + k ) e. S )
15 14 adantr
 |-  ( ( A e. S /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A + k ) e. S )
16 7 15 eqeltrd
 |-  ( ( A e. S /\ N e. NN0 ) -> ( A RiseFac N ) e. S )