| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cnd |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. CC ) |
| 2 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
| 3 |
2
|
nncnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
| 4 |
3
|
adantl |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. CC ) |
| 5 |
1 4
|
pncan3d |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( 1 + ( k - 1 ) ) = k ) |
| 6 |
5
|
prodeq2dv |
|- ( N e. NN0 -> prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) = prod_ k e. ( 1 ... N ) k ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
risefacval2 |
|- ( ( 1 e. CC /\ N e. NN0 ) -> ( 1 RiseFac N ) = prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) ) |
| 9 |
7 8
|
mpan |
|- ( N e. NN0 -> ( 1 RiseFac N ) = prod_ k e. ( 1 ... N ) ( 1 + ( k - 1 ) ) ) |
| 10 |
|
fprodfac |
|- ( N e. NN0 -> ( ! ` N ) = prod_ k e. ( 1 ... N ) k ) |
| 11 |
6 9 10
|
3eqtr4d |
|- ( N e. NN0 -> ( 1 RiseFac N ) = ( ! ` N ) ) |