Metamath Proof Explorer


Theorem risefacp1d

Description: The value of the rising factorial at a successor. (Contributed by Scott Fenton, 19-Mar-2018)

Ref Expression
Hypotheses rffacp1d.1
|- ( ph -> A e. CC )
rffacp1d.2
|- ( ph -> N e. NN0 )
Assertion risefacp1d
|- ( ph -> ( A RiseFac ( N + 1 ) ) = ( ( A RiseFac N ) x. ( A + N ) ) )

Proof

Step Hyp Ref Expression
1 rffacp1d.1
 |-  ( ph -> A e. CC )
2 rffacp1d.2
 |-  ( ph -> N e. NN0 )
3 risefacp1
 |-  ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac ( N + 1 ) ) = ( ( A RiseFac N ) x. ( A + N ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A RiseFac ( N + 1 ) ) = ( ( A RiseFac N ) x. ( A + N ) ) )