Step |
Hyp |
Ref |
Expression |
1 |
|
risefacval |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ n e. ( 0 ... ( N - 1 ) ) ( A + n ) ) |
2 |
|
1zzd |
|- ( ( A e. CC /\ N e. NN0 ) -> 1 e. ZZ ) |
3 |
|
0zd |
|- ( ( A e. CC /\ N e. NN0 ) -> 0 e. ZZ ) |
4 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
5 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
6 |
4 5
|
syl |
|- ( N e. NN0 -> ( N - 1 ) e. ZZ ) |
7 |
6
|
adantl |
|- ( ( A e. CC /\ N e. NN0 ) -> ( N - 1 ) e. ZZ ) |
8 |
|
simpl |
|- ( ( A e. CC /\ N e. NN0 ) -> A e. CC ) |
9 |
|
elfznn0 |
|- ( n e. ( 0 ... ( N - 1 ) ) -> n e. NN0 ) |
10 |
9
|
nn0cnd |
|- ( n e. ( 0 ... ( N - 1 ) ) -> n e. CC ) |
11 |
|
addcl |
|- ( ( A e. CC /\ n e. CC ) -> ( A + n ) e. CC ) |
12 |
8 10 11
|
syl2an |
|- ( ( ( A e. CC /\ N e. NN0 ) /\ n e. ( 0 ... ( N - 1 ) ) ) -> ( A + n ) e. CC ) |
13 |
|
oveq2 |
|- ( n = ( k - 1 ) -> ( A + n ) = ( A + ( k - 1 ) ) ) |
14 |
2 3 7 12 13
|
fprodshft |
|- ( ( A e. CC /\ N e. NN0 ) -> prod_ n e. ( 0 ... ( N - 1 ) ) ( A + n ) = prod_ k e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( A + ( k - 1 ) ) ) |
15 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
16 |
15
|
a1i |
|- ( ( A e. CC /\ N e. NN0 ) -> ( 0 + 1 ) = 1 ) |
17 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
18 |
|
1cnd |
|- ( N e. NN0 -> 1 e. CC ) |
19 |
17 18
|
npcand |
|- ( N e. NN0 -> ( ( N - 1 ) + 1 ) = N ) |
20 |
19
|
adantl |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( N - 1 ) + 1 ) = N ) |
21 |
16 20
|
oveq12d |
|- ( ( A e. CC /\ N e. NN0 ) -> ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
22 |
21
|
prodeq1d |
|- ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ( A + ( k - 1 ) ) = prod_ k e. ( 1 ... N ) ( A + ( k - 1 ) ) ) |
23 |
1 14 22
|
3eqtrd |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ k e. ( 1 ... N ) ( A + ( k - 1 ) ) ) |