Description: Two ways to say " A belongs to B ". (Contributed by NM, 22-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | risset | |- ( A e. B <-> E. x e. B x = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | |- ( E. x ( x e. B /\ x = A ) <-> E. x ( x = A /\ x e. B ) ) |
|
| 2 | df-rex | |- ( E. x e. B x = A <-> E. x ( x e. B /\ x = A ) ) |
|
| 3 | dfclel | |- ( A e. B <-> E. x ( x = A /\ x e. B ) ) |
|
| 4 | 1 2 3 | 3bitr4ri | |- ( A e. B <-> E. x e. B x = A ) |