Description: Two ways to say " A belongs to B ". (Contributed by NM, 22-Nov-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | risset | |- ( A e. B <-> E. x e. B x = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom | |- ( E. x ( x e. B /\ x = A ) <-> E. x ( x = A /\ x e. B ) ) |
|
2 | df-rex | |- ( E. x e. B x = A <-> E. x ( x e. B /\ x = A ) ) |
|
3 | dfclel | |- ( A e. B <-> E. x ( x = A /\ x e. B ) ) |
|
4 | 1 2 3 | 3bitr4ri | |- ( A e. B <-> E. x e. B x = A ) |