Metamath Proof Explorer


Theorem rlimcj

Description: Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimabs.1
|- ( ( ph /\ k e. A ) -> B e. V )
rlimabs.2
|- ( ph -> ( k e. A |-> B ) ~~>r C )
Assertion rlimcj
|- ( ph -> ( k e. A |-> ( * ` B ) ) ~~>r ( * ` C ) )

Proof

Step Hyp Ref Expression
1 rlimabs.1
 |-  ( ( ph /\ k e. A ) -> B e. V )
2 rlimabs.2
 |-  ( ph -> ( k e. A |-> B ) ~~>r C )
3 1 2 rlimmptrcl
 |-  ( ( ph /\ k e. A ) -> B e. CC )
4 rlimcl
 |-  ( ( k e. A |-> B ) ~~>r C -> C e. CC )
5 2 4 syl
 |-  ( ph -> C e. CC )
6 cjf
 |-  * : CC --> CC
7 6 a1i
 |-  ( ph -> * : CC --> CC )
8 cjcn2
 |-  ( ( C e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( * ` z ) - ( * ` C ) ) ) < x ) )
9 5 8 sylan
 |-  ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - C ) ) < y -> ( abs ` ( ( * ` z ) - ( * ` C ) ) ) < x ) )
10 3 5 2 7 9 rlimcn1b
 |-  ( ph -> ( k e. A |-> ( * ` B ) ) ~~>r ( * ` C ) )