Metamath Proof Explorer


Theorem rlimcl

Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion rlimcl
|- ( F ~~>r A -> A e. CC )

Proof

Step Hyp Ref Expression
1 rlimf
 |-  ( F ~~>r A -> F : dom F --> CC )
2 rlimss
 |-  ( F ~~>r A -> dom F C_ RR )
3 eqidd
 |-  ( ( F ~~>r A /\ x e. dom F ) -> ( F ` x ) = ( F ` x ) )
4 1 2 3 rlim
 |-  ( F ~~>r A -> ( F ~~>r A <-> ( A e. CC /\ A. y e. RR+ E. z e. RR A. x e. dom F ( z <_ x -> ( abs ` ( ( F ` x ) - A ) ) < y ) ) ) )
5 4 ibi
 |-  ( F ~~>r A -> ( A e. CC /\ A. y e. RR+ E. z e. RR A. x e. dom F ( z <_ x -> ( abs ` ( ( F ` x ) - A ) ) < y ) ) )
6 5 simpld
 |-  ( F ~~>r A -> A e. CC )